

# Verb Categorisation for Hindi Word Problem Solving

Harshita Sharma, Pruthwik Mishra, Dipti Misra Sharma {harshita.sharma, pruthwik.mishra}@research.iiit.ac.in, dipti@iiit.ac.in



## CONTRIBUTIONS

- We have created verb categorisation data for Hindi language.
- We introduce three new verb categorisation approaches.
- We introduce a intuitive rule-based solver that uses verbs to identify specific mathematical operations to solve word problems.

### VERB CATEGORISATION DATA

#### **VERB CATEGORIES**

- Observation: It states just the presence of entities in a container.
- **Positive:** It states the quantity of entities being added to a container or which are created in a container.
- **Negative**: It states the quantity of entities being removed or destroyed from a container.
- **Positive Transfer:** It is associated with statements that involve two containers. It states a transfer of the quantity of entities from second container to the first.
- **Negative Transfer:** It is associated with statements that involve two containers. It states a transfer of the quantity of entities from first container to the second.
- In the HAWP dataset (2336 word problems), 1713 word problems are based on addition and subtraction operations.
- In these 1713 word problems, there are around **200 unique verbs**. These verbs were annotated with the categories mentioned above.

# VERB CATEGORISATION APPROACHES

#### I. VERB DISTANCE

- Each verb in Hindi is represented by its pre-trained
  FastText word vector of 300 dimensions.
- A test verb is assigned the verb category corresponding to its closest training verb. We implemented this approach using **1-nearest neighbor approach**.

### II. STATISTICAL METHODS

- Bag of words representation for a verb and its neighbours in their actual order as a sample and the category of the verb as the label.
- We created samples for the task using word-level information (POS and dependency tags) with the context



Figure 1: Training Statistical Models

- window size as 7, as indicated in Figure 1.
- We performed this classification task using 3 machine learning approaches: Logistic Regression, Random Forest and Support Vector Machines (SVM).

#### III. MuRIL

- For this task, all the words till a verb is encountered constitute a sample. A total of 6506 samples were created for verb categorization.
- MuRIL is fine-tuned for ten epochs with a batch size of 4.

#### **RESULTS**

 We used 5-fold cross validation technique to evaluate the models

| Metric                  | F1-score |
|-------------------------|----------|
| Verb Distance           | 0.895    |
| Linear Regression       | 0.865    |
| Random Forest           | 0.883    |
| Support Vector Machines | 0.904    |
| MuRIL Fine-tuning       | 0.962    |

## RULE BASED SOLVER EXAMPLE

shon ke paas 13 blok the. mildred ke paas 84 blok the. mildred ne shon ko 2 blok die. mildred ke paas kitane blok bache?

Gloss: Shawn had 13 blocks. Mildred had 84 blocks. Mildred gave 2 blocks to Shawn. How many blocks does Mildred have left?





